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Series expansions of the percolation probability for
directed square and honeycomb lattices
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Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 18 April 1995

Abstract. We have derived long series expansions of the percolation probability for site and
bond percolation on directed square and honeycomb lattices. For the square bond problem
we have extended the series from 41 terms 10 54, for the sguare site problem from 16
terms to 37, and for the honeycomb bond problem from 13 terms to 36. Analysis of the
series clearly shows that the critical exponent 8 is the same for all the problems, confirming
expectations of universality. For the critical probability and exponent we find in the square
bond case, g, = 0.3552994 & 0.0000010, § = 027643 £ (.00010; in the sguare site
case g. = (0,294 515 £ 0.000005, £ = 0.2763 % 0.0003; and in the honeycomb bond case
gc = 0.177143 4 0.000002, 8 = 0.2763 &+ 0.0002, In addifion we have obtained accurate
estimates for the critical amplitudes. In all cases we find that the leading comection to scaling
term is analytic, i.e. the confluent exponent A = 1.

1. Introduction

Directed percolation (DP) was originally introduced by Broadbent and Hammersley (1957)
as a2 model of fluid flow through a random medium and has since been associated with
a wide variety of physical processes. In static interpretations, the prefeired direction is 2
spatial direction, and DP could represent the percolation of Auid through porous rock with
a certain fraction of the channels blocked (De’Bell and Essam 1983b), crack propagation
(Kertész and Viscek 1980) or electric current in a diluted diode network (Redrer and Brown
1981). In dyramical interpretations, the preferred direction is time, and DP is miodelled by a
stochastic cellular automaton (Kinzel 1985) in which all lattice sites evolvé simultaneously
and the main interpretation is as an epidemic without immunization (Harris 1974, Li,gget’t
1985). The behaviour of these models is generally controlled by a single parameter p,
which could be the probability that a channel is open or the inféction probability, depending
on one’s favourite interpretation.

When p is smaller than a critical value p, the fluid does not percolate through the
rock (the epidemic dies out). Let P(p) be the probability that the wetted region percolates
infinitely far from the source (the nltimate survival probability in epidemic language) then
one expects:

P(p)ox (p — p.)f p— pf. )]

DP-type transitions are also encountered in many other situations, perhaps most
prominently in Reggeon field theory (Grassberger and Sundermeyer 1978, Cardy -and Sugar
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1980), chemical reactions {Schlégl 1972, Grassberger and de la Torre 1979), in numerous
models for heterogeneous catalysis and surface reactions (Ziff ez al 1986, Kshler and ben-
Avraham 1991, Zhuo et al 1993, Jensen 1994), self-organized criticality (Obukhov 1990,
Paczuski et al 1994) and even galactic evolution {Schulman and Seiden 1982). This short
and far from complete list clearly demonstrates that directed percolation is a problem which
emerges in a diverse set of physical problems and therefore deserves a great deal of attention.

In this paper we discuss series expansions for the percolation probability on directed
square and honeycomb lattices. The earliest series expansion for the square bond problem
was the eight terms calculated by Blease (1977). A great improvement was due to Baxter and
Guttmann (1988) whe extended this series to 41 terms. For the honeycomb boad problem,
Onody (1990) obtained a 13-term series and for the square site problem the longest series of
16 terms is due to Onedy and Neves (1992) improving the previous record of 10 terms held
by De’Bell and Essam (1983a). Using the finite-lattice method pioneered in this context
by Baxter and Guttimann (1988) we have extended these series to 54 terms for the square
bond preblem, 37 terms for the square site problem and 36 terms for the honeycomb bond
problem. The percolation probability for the honeycomb site problem is related very simply
to that of the square site problem, P7€(p) = P52(p?) (Dhar et af 1982, Essam and De’Bell
1982). Note also that bond percolation on the honeycomb lattice may be viewed as site-
bond percolation on the square lattice (Essam and De’Bell 1982). In passing, we note that
long series have been obtained for the moments of the pair connectedness for the site and
bond problems on square and triangular lattices (Essam et al 1986, 1988).

2. The finite-lattice method

We wish to calculate the series expansion of the percolation probability on square and
honeycomb lattices oriented as in figure 1. We shall consider both site and bond percolation
on these lattices. In site (bond) percolation each site (bond) is independently present with
probability p and absent with probability ¢ = 1 — p. Two sites are connected if one can
find a path passing through occupied sites (bonds) only, while always following the allowed
directions. For an infinite system, when g is less than a critical value g, there is an infinite
cluster spanning the lattice. The order parameter of the system is the percolation probability
P(q}, i.e. the probability that a given site belongs to the infinite cluster. Note that a path
passing through a given site can only lead to ihe sites shown in figure 1 below the origin
O. This naturally leads one to consider a finite-lattice approximation to P{g), namely the
probability Py(g) that the origin is connected to at least one site in the Nth row. Py(g)
is a polynomial in ¢ with integer coefficients and a maximal order determined by the total
number of sites (bonds) that may be present on the finite lattice,

Figure 1. The directed square and honeycomb lattices with orientation given by the arrows,
The rows are labelied according to the text.
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It has been proved (Bousquet-Mélou 1995), for all the problems considered in this paper,
that the polynomials Py(g) have a formal limit in the algebra of formal power series in
the variable ¢, and therefore P(g) = limy_,o Py{(g). In all cases one finds that Py(g)
converges to P(g) in such a way that the first N (or N — 1 depending on the specific
problem) terms of the polynomials Py{g) coincide with those of P(g).

2.1, Specification of the models

In order to calculate Py(g) we associate a state o; with each site, such that «; = 1 if site
J is connected to the Nth row and o; = —1 otherwise. We shall often write +/— for
simplicity. Note that a site can be in state —1 even though, in the case of site percolation,
it is itself occupied, or, in the case of bond percolation, bonds emanating from the site are
present. Let /, r denote the sites below ¢ as in figure 1. We then define the triangle weight
function W{o;loy, o) as the probability that the top site ¢ of the triangle is in state ¢, given
that the lower sites / to the left and r to the right are in states o7 and &,, respectively. One
can then prove (Bidaux and Forgacs 1984, Baxter and Guttmann 1988) that

Py(g) =) _[[Wlar o) @)
fo) ¢
where the product is over all sites j of the lattice above the Nth row. The sum is over all
values & of each o;, other than the topmost spin ¢y which always takes the value +1. The
spins in the Nth row are fixed to be +1. In short Py(g) is calculated as the sum over all
possible configurations of the probability of each individual configuration.

Table 1. The triangle weight functions for the various directed percolation problems. Generally
one has W{=loy, 6,) = 1 — W{+|oy, o0 }.

Problem  W{+|+,+4) Wi+, Y= Wl-,4) W=, -)
S0-bond  1—4? l—g 0
HC-bond (1-gHl-g% (1—g)2 . o
S0 -site i-¢ 1-¢ 0
0

HCsite (1 = g)2 {1-g)?

The weights W are listed in table 1. Obviously, W(—|o;,0,) = 1 — W(+|oy, 5,). The
remaining weights are easily calculated by considering the various possible arrangements of
states and bonds. W(+|—, —) = 0 because the top site is connected to the Nth row if and
only if at least one of the neighbours is connected. Let us next look at the remaining square
bond weights. W(4-]+. +) = 1—¢* because the only bond configuration not allowed is both
bonds absent which has probability g2. Finally, W (4|4, =) = W(+i{—, +) = 1—¢ because
the bond connecting the two -+ states has to be present, which happens with probability
p = 1—g, and the other bond can be either present or absent. For the honeycomb bond
problem we find that WHC (4o, 0,) = (1 — ) WS2(+|o7, o) because if the top state is
+1 the vertical bond has to be present. Note that one can think of the honeycomb bond
problem as site-bond percolation on the directed square lattice where both sites and bonds
are present with equal probability (Essam and De’Bell 1982). For the square site problem
the weights are a little simpler since a site can be in state <1 only if it is present and W
picks up only the probability of the top state, therefore W(+|—, —) = 0 as before and all
the other weights with a +1 top staie are equal to 1 —g. The honeycomb site weights
are derived from the square site weights in the same manner as for the bond case. Note
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that it is customary to assume in site percolation problems that the origin is present with
probability 1.
For the square and honeycomb site problems we therefore find

Pogy =3 [[Wieder o) =3 WolOloz, o) [| Wiailor, o) -
faj 1 [£3} T

The weights W(a;|o1, o) are those of table 1 and Wy is the weight of the topmost triangle.
It is clear from table 1 that for the site problem W¥#C(g) = W¥€(2g — ¢%). Since the ‘top’
weights are 1 for the square site problem and 1 — g for the honeycomb site problem we
find that

P = - Pl - (1 — g 3)

which is essentially the relation mentioned in the introduction, derived from the work of
Dhar et al (1982} by Essam and De’Bell (1982).

2.2. Series expansion algorithm

For small N it is quite easy to calculate Py{g) by hand, but for larger N one obviously
has to resort to computer algorithms. The algorithms are basically implementations of a
transfer-matrix method. From (2) we see that the evaluation of Py(g) involves only local
‘interactions’ since the weights involve only three neighbouring sites. The sum over all
configurations can therefore be performed by moving a boundary line through the lattice.
At any given stage this line cuts through a number of, say m, lattice sites thus leading to
a total of 2™ possible configurations along this line. Any configuration along the line
is trivially represented as a binary number by Ietting the rth bit of the number equal
(or + 1)/2. For each configuration along the boundary line one maintains a (truncated)
polynomial which equals the sum of the product of weights over all possible states on
the side of the boundary already traversed. The boundary is moved through the lattice
one site at a time. In figure 2 we show how the boundary is moved in order to pick
up the weight associated with a given triangle at position » along the boundary line. Let
SO =(xy,....%—1,0, a1y ..., Xpy) be the configuration of sites along the boundary with
0 at position r and similarly S1 = (xy, ..., %1, 1, Xr41, ..., X} the configuration with 1
at position r. Then in moving the rth site from the bottom left to the top of the triangle we
see that the polynomials associated with these configurations are updated as

P{S0) = W(0[0, x, 1) P(50) + W(DI1, x._;) P(S1)

P(S1)y = WO, x,— ) P(SO) 4 WL, x,— )} P(S1). @

The calculation of Py{g) by this method is limited by memory, since one needs storage
for 2¥-! boundary configurations. To alleviate this problem one can introduce a cut into
the lattice, fix the states on this cut, evaluate the lattice sum Pﬁ (g) for each configuration
C of the cut, and finally get Py(g) = 3 P§ {g) as the sum over all configurations of the
cut. By placing the cut appropriately, the growth in memory requirements can be reduced
to 2N/2, Qbviously the fnite-lattice calculation for different configurations of the cut are
independent of one another and these algorithms are therefore perfectly suited to take full
advantage of modern massively parallel computers. In the foliowing section we give a few
more details of the algorithms we have used.
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Figure 2. Part of the directed square lattice with the present boundary indicated by open circles.
All weights to the left of this boundary have been summed. The weight of the triangle given by
(xr, %], x,-1) is picked up by moving the boundary from x, to x] and updating the associated
polynomials according to equation (4).

2.2.1. The bond-problem algorithm, A very efficient algorithm was devised by Baxter for
the square bond problem (Baxter and Guttmann 1988). All we had to do for the present
work was basically to parallelize the algorithm in order to fully utilize the Intel Paragon
at Melbourne University. The algorithm is based on an ingenious transformation of the
square bond problem onto a honeycomb lattice. This is done by noting that the square bond
weights can be written as

Werlon o) = D Fl(0r,0m)8(01, om)8(Cr, Om) (5)
oq==%1
where
[l +)y=~1 fth)=f(=+)=1 f(=-)=0
g+ +r=gq g+ —)=g(—,H)=g(-,—)r=1.

This means that if we replace each upwards-pointing triangle in figure 1 by a three-
pointed star, arriving at the honeycomb lattice of figure 3, then Py(g)} can be calculated
from this Jattice by assigning weights f(o;,0,) to vertical edges (i, j) and g{oy, o7) 10
non-vertical edges.

(6

X R Y

Figure 3. The transformed lattice used in the square bond algorithm. The sites marked with the
full circles on the cut-line SR are fixed,

A cut of length L is introduced along the line RS in figure 3 and the transfer-matrix
technique is used to build up the lattice to the left of RSO, starting from XR and working
upwards to OS. The lattice is symmetrical around the central axis RSO and one can therefore



4818 I Jensen and A J Guitmann

obtain the lattice sum for the whole lattice by forming the sum of the squares of each
boundary line polynomial. After this operation, the whole lattice is summed except for
the edges on the centre-line, So finally one has to multiply the (squared) boundary line
polynomials by the weights of these edges. This is where the great advantage of the
transformation becomes clear. Because f(—, —} = 0 we need never consider configurations
of the cut (or parts of the boundary line in the vertical position) which have any (—, —) edge.
This basically means that the number of configurations of the cut which contribute to Py(g)
grow only like 3%/2 rather than the usually expected 2*. The transformation thus provides
us with an exponentially faster algorithm. Likewise, as parts of the boundary line enter
the vertical position, no (—, —) edges need to be considered, which leads to a significant
reduction in the length of the cut for 2 given amount of memory. The memory requirement
for the algorithm is governed by the maximal extent of the boundary line, which is at XR,
and hence grows like 2¥/2-!, With this algorithm we calculated Py(g) for N < 39. Since
the integer coefficients occuring in the series expansion become very large the calculation
was performed using modular arithmetic (see, for example, Knuth 1969). Each run, using
a different modultus, took approxzimately 24 hours using 50 nodes on an Intel Paragon.

Virtually the same algorithm can be used for the honeycomb bond or site-bond square
problem except that the ¥ weights have to be replaced by

fEH)=—(U-g) fE =) =f(=+H)=1-g H=-)=gq. N

Since f(—,—) no longer equals 0, obviously the great advange of the original
transformation vanishes and the number of configurations of the cut grow like 2. For
this reason we had to siop calculating Py(g) at N = 33, where each modulvus required
about 32 hours of CPU time using 50 nodes.

2.2.2. The site-problem algorithm. For the sile problem the growth in memory c¢an be
limited to 2¥/2-1 by introducing a cut across the lattice at row N /2. The upper part of the
lattice is built up first by the transfer-matrix technique, yielding a partial lattice sum Pu
and then the lower part PF is done. The total lattice sum for a given cut P is simply the
product of these, ie. PS = Pf Pu Again Py(g) is the sum over all configurations of the
cut. It might seem that the numbers of cuts grow as 2¥/2. Substantial simplifications can,
however, be obtained. Note first of all that there is symmetry around the central vertical line,
which basically reduces the number of cut-configurations by a facior of 2. A more subtie
means of reducing the number of cuts is obtained as follows. Since all triangle weights
with at least one + on the botiom are the same, it follows that for any two configurations
C and C’, which can be turned into one another by changmg any number of +s to —s
withour adding or removing any {——) sequences, PU PU This means, for example,
that for any cut C without (——) occurences, PC equals the partial sum of the all +s cut.
1t is possible to use this property to perform the lower lattice sum simultaneously for many
cuts, As an example consider cuts starting with +-+ and —+ but which otherwise are the
same. The upper part is the same and the lower part is also the same except for the weight
of the left-most triangle on the cut. By considering the various possibilities when moving
the boundary line across this point, one can easily see that the two configurations can be
summed simultaneously, i.e. the —+ cut can be made as part of the ++ cut. We calculated
Pnig) for N < 32, which took about 48 hours for each modulus with N = 32 using 50
nodes,

We also calculated the series expansion for the honeycomb site problem up to Psz(g).
Although we know the exact relation between the two site problems (3), this calculation
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provides us with an extra check of the algorithm and the extrapolation formulae we shall
discuss presently.

3. Extrapolation of the series

As mentioned Py(q) will generally agree with the series for P{g) up to some order
determined by ¥. For the square bond problem the coefficients of Py(q) = Zm;oaw.mqm
agree with those of P(g) = Zm;o anq™ to order N. Baxter and Guttmann (1988) found
that the series for P(g) can be extended considerably by determining the correction terms
to Py(g). Let us look at

Py —Prai=q"Y q'dy,. 8)
rzi
Then we shall call dy , = an y+r — Anv+1,v+r the rth correction term. Obviously if one can
find formulae for dy, for all r € K then one can use the series coefficients of Py(g) to
extend the series for P(g) to order N + K since

aNsk = aNNsk— 3 dnskmm @
m=1

for all £ < K. That this method can be very efficient was clearly demonstrated by Baxter
and Guitmann, who identified the first 12 correction terms and used Px(g) to extend the
series for P(g) to 41 terms. To really appreciate this advance one should bear in mind that
the time it takes to calculate Py(g) grows exponentially with N, so a direct calculation
correct to the same order would have taken years rather than days. In the following we will
give details of the correction terms for the various cases.

3.1. The square bond case

The first correction term for the square bond case is given by the Catalan numbers
dyg=cy = CEND/NUN 4+ I (10

a result which was proved (Bousquet-Mélou 1995) by noting that the correction term arises
from compact bond animals of directed height N and perimeter N+1. The second correction
term

dna=2en — eng (11)

was also caleulated exactly recently (Bousquet-Mélou 1995). As noted by Baxter and
Guttmann (1988) the higher-order correction terms dy, can be expressed as rational
functions of the Catalan numbers. We have found that dy, can always be wiitten in
the form

[r=1/2] N —m 2r—4
dn, = Z Arx ( & ) CN—m + Z By jCN-r42+j (12)
k=1 i=1
where m = max(0, r — 4 — 2k). These formulae hold for all available N, provided that
only Catalan numbers ¢, with m > 0 are involved. As noted by Baxter and Guttmann it
is also true for m = —1 provided one ‘defines’ ¢_; = —1 (there was a misprint at this
point in the original article). Thus the extrapolation formulae are true for ¥ = r — 4. For
r £ 15 the coefficients A,; and B, ; are either integers or fractions with small (two or

five) denominators. Note that there are various relations between the Catalan numbers so
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there are infinitely many ways of writing (12). For several of the correction formulae the
general form adopted in this paper is slightly different from that of Baxter and Guttmann
(1988) who ttied wherever possible to choose a form involving only integers. The trade-
off for having a general expression for the correction terms is that more rational fractions
become involved. However, with the proliferation of powerful mathematical packages such
as MAPLE and MATHEMATICA this trade-off is well worth while. In table 2 we have listed
the coefficients A, ; and B, ; for r < 15. Using these extrapolation formulae and the series
for Pis(g) we have extended the series for P(g) to the 54 terms given in table 3.

3.2. The square site case

Inspired by the success of the extrapolation procedure for the square bond problem one
might hope for similar success for other problems. And indeed one can find several of the
correction texms for the square site problem, although the success is less spectacular as one
is restricted to the first six correction terms. The first correction term dy,; was identified by
Onody and Neves (1992) and has since been computed exactly by Bousquet-Mélou (1995):
(3N
= NN D1

This expression for the correction term was identified by Onody and Neves (1992) as
the number of ways of inserting n — 4 sheets through a ball having » vertices on its surface
such that pairs of sheets meet only on surface curves joining vertices! While this is true, a
more useful and pertinent interpretation can be given. Viennot (1994) has pointed out that
this is just the expression for the number of ternary trees of n vertices, which in turn is
isomorphic to the number of diagonally convex directed animals (Delest and Fédou 1989).
It is the identification between these animals and the first correction term that has been
proved by Bausquet-Mélou (1995). She also proved our formula for the second correction
term.

As in the square bond case we can express higher correction terms as a function of
dy,1. Again, there are infinitely many ways of expressing the formulae for the correction
terms, one of which is

dna {13}

1 2r-1
N
dy =7 Cr.i( i )dﬁ.l“l' > (NByj+ Arp)dx, (14)
i=2 =1

where K =N-~r+jforr<4and K =N—r—1+jforr = 5 These formulae
are correct up to r = 6, whenever N 2 r. The coefficients are listed in table 4. These
formulae allow us to extend the series for P(g) by an additional six terms to a total of 37
terms listed in table 5.

3.3. The honeycomb bond case

For bond percolation on the directed honeycomb lattice Bousquet-Mélou (1995) proved that
the generating function f = 3" ., dw.1t”~ of the first correction term dy.; is characterized
by the algebraic equation

f=1+tf+%((7+t)f2+f3). (15)

The higher-order correction terms are given by the formulae

r N N 2r
d=3 D (5 )G ()] dnesszens + 0B + dupdvrsaris 06
k=1 j

J=1
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Table 3. The coefficients a, in the series expansion of P{g) = 3,4 ax¢" for directed-bond
percolation on the square lattice.

n a, M ap
o 1 28 —16161 597987
i 0 29 —43448 897 414
2 ~1 30 ~117083094 391
3 -2 3l —315709399 172
4 -4 32 —853 195535637
5 -8 33 —2306601710 190
6 -17 34 —6249 350665 825
7 -38 35 —16933 569 745 596
8 —-88 36 —459823825444 618
9 -210 37 —124 847 185 166 968
10 —511 38 —333715065 397 631
1 —-1264 3% =923984 791 735474
12 -3165 40 -2518902151116767
13 —3006 41 —6861 776 192406 434
14 —-20426 42 —18 738381486 019 497
15 ~52472 43 =51115047 622373452
16 —135682 44 — 139811976659 987 636
17 ~352562 45 —381836043 069 041990
18 —920924 46 —1046 008 104 766 969 784
19 —2414272 47 —2859625985546910 846
20 —6356365 48 ~7845284416715093 642

2] ~16782444 49  —21465842456693 034778
22 44470757 50 —5B97649]1160296065 655 -
23 —11B050648 51 —161476439366532026 854
24 -314580062 52 —444296183371760430967
25 —B39379548 53 —1217055970699512453538
26 —2245969278 54 —3353766967706 302949 866
27 —-6017177104

which we find to be comect for ¥ € 4 and N 2 2r — 1, The coefficients are listed
in table 6 apart from the Ds since the only non-zero ones are Dy 3 = —157281/5 and
Dyn = 1744273/5. The final 36-term series for P(g) is given in table 7.

4. Analysis of the series

We expect that the series for the percolation probability behaves like
P(g)~ Al - q/g: Pl +as(l — q/g)" + -] (17}

where A is the critical amplitude, A is the leading confluent exponent and the *- - -’ represents
higher-order correction ierms. By universality we expect 8 10 be the same for all the
percolation problems studied in this paper and we will argue that the dominant correction
term is analytic, L.e. A = 1.

In the following sections we present the results of our analysis of the series which include
accurate estimates for the critical parameters q., 8, A and A. For the most part the best
results are obtained using Dlog Padé (or in some cases just ordinary Padé) approximants.
A comprehensive review of these and other techniques for series analysis may be found in
Guttmann (1989).
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Table 5. The coefficients g, in the series expansion of P{g) = 3 woa.q" for directed site
percolation on the square lattice.

dn

"

@n

00~ h Lh B W b= O

w

10
1}
12
13
14
15
16
17

1
0
-1

-3

-8
21
~56

—154
—434
-1252
-3675
-10954
~33044

~ 100676
~309569
—957424
—2987346
—9330274

13 29522921

19
20
21
22
23
24
25
26
27
28
29
30
3
2
33
34
35

~92459524
—298 142956
~922424 269
—3098 690 837
—9042937179
—34 187 149573
—79 544 646 083
~439 149878 359
=313237196088
—7786443675714
16637473844 344

—207 593240544 002

973714 665769453

~7311741 153076579
43345 744 201 832 502

~292472879 532946388
1867850225746 155 582
36 —12389925641 797917500
37 81441368912809214904

Table 6. The coefficients A, ;, B, ; and Cp,; in the extrapolation formulae for the honeycomb

bond problem.
Ay, By, Cej
rii -2 3 4 2 3 4 2 3 4

1 =85 10954} -2773464 1. 141 56964

814389 —128 17533 -869651%

2678 874953 —24330909{% 547 ~48502%; 7805538453 —1414 192954 ~111866045

3 —3% 18314 4150408k 4 2925 —424945 3% 128 -16638 224372
H I 0 4% 20 wo 128 b 50

4 s93f 2766633 —6164; 986758

5 663 -56787% 23} 313757

6 7% -33717% 54 94761

7 —6464 875

8 ~315} —1875%

4.1, g.and B

_In table 8 we show the Dlog Padé approximants to the percolation probability series for
bond percolation on the directed square lattice. The defective approximants, those for which
there is a spurious singularity on the positive real axis closer to the origin than the physical
critical point, are marked with an asterisk. The overwhelming majority of the approximants
cluster around the values g, = 0.3552994 and 8 = 0.27643, As always in this type
of analysis it is very difficult to accurately judge the true errors of the estimates of the
critical parameters, however we venture to say that the critical parameters lie in the ranges
" g. = 0.3552994(10) and 8 = 0.27643(10), where the figures in parentheses indicate the
estimated error on the last digits. The other remarkable feature of table 8 is that surprisingly
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Table 7. The coefficients a, in the series expansion of P(g) = En?‘, a,g" for directed bond
percolation on the honeycomb Iattice.

n ay n an
0 1 19 —1103 369 168956
1 -1 20 —-5771 541600014
2 —4 21 —31 153472926184
3 -12 22 —160153 702442390
4 -45 23 —907 425 183546 587
5 ~188 24 —4317291410619157
6 —835 25 —28433248376749 141
7 —3849 26 —99 125481 158 184567
8 —-18242 27 -1076035285073833 314
9 —88265 28 --238091 850291 444 337

10 —434295 29 —58631611223043405378

11 —2165198 30 279283045229 982 597450

12 —-10%15082 31 —4730 770444 199592 196256

13 55534781 32 40 182 669640102 878 093 220

14 —284708699 33 —480 633574529 182764 438 221
15 =1470350760 34 4852667371 105928 333619923
16 —7628363273 35 —53829647651783620888423836
17 39878267745 36 574209696 125704 803 372604 206
18 208458228964 37

Table 8. Dlog Padé approximants to the percolation series for directed bond percolation on the
square lattice.

{N~—1,N] [V, N1 IN+1,N]

N qc 8 gc g e 8

11 0.3553000 027645 03553030 027653 03553023  0.27651
12 03553016 027649 03553011 027648 03552997  0.27644
13 03553028 0.27652*% 03553004 027646 03553000  0.27645
14 0.3552994 027643 03552972 027634 03552995  0.27643
15 0.3552991 027642  (.3552994 027643 03552994 0.27643
16 0.35520%4 0.27643 03552994 027643  .3552994  (.27643
17 03552994 027643 03552994 027643  0.3552097+ (0.27644*
18 03552994 0.27643 03552992 027642 03552983 027632
19 0.3553002* 027643* 0.355299! 0.27641 0.3552996% 0.27644%
20 0.3352994 027643  (.3552994  0.27643 03552994  0.27643
21 03552994 0.27643 03552994 027643  0.3552994% 027643
22 0J3552994*% D27643* 0.3552994* 0.27643* 0.3552994% (.27643*
23 0.3552994* 027643% (0.3352994 027643 03552994  0.27643
24 0.3552993* 0.27643*% 03552993+  027643* 03552995 027644
25 03552993% 027643* 03552997  0.27645 03552995%  0.27644*
26 03552991% 0.27643* 0.3552990* 027643* 0.3552986%  0.27647*
27 0.3552993* 0.27643*

many of the high-order approximants are defective.

The results of the analysis of the serjes for the square site problem are listed in table 8,
In this case there is a marked wpward drift in the estimates for both g. and g and the
estimates do not settle down to definite values. It does, however, seem likely that the true
critical parameters lie within the estimates g, = 0.294 515(5) and 8 = 0.2763(3).
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Table 9. Dlog Padé approximants to the percolation series for directed site percolation on the
square lattice.

[N -1 N] {N, N] [V +1, ]
qe g 9c ] 9 ]

N

5 02939337 (26881 0.2543291 0.27266 02942979 027218
6 02942670 027190  (.2943175 027252 0.2942699% (.27199*%
7
8

02044168 027393 0.2944521 0.27453 02044777 027502

0.2945135 0.27585 0.2044742 0.27495 0.2944794%  0.27505*
9 0.29443599 0.27465 0,294 4720 027490 02944739 027494
10 02944753 0.27498 0.2944656% 027478 (.2944542 0.27546
11 0.2945228 027655 0.2545156 0.27623 02045020 027571
12 02945246 027662* 0.2945060 027586 0.2945058 0.27585
13 02945058 027585 0.2945061* 027586 02945047 027581
14 029435051 0.27578 02945051 027582 * *
15 0.2945056 027584 0.2945047* 027581*% 0.2945032% 0.27576*
16 0.294 5069 0.27589 0.2945096 0.27602 0.294 5089 027598
17 0.2943090 027599 0.294 50985 0.276 01 0.2945113 027612
18 0.2945134 0.27625 02945111 027611

Table 10. Dlog Padé approximants to the percolation series for directed bond percolation on
the honeycomb lattice.

[N -1, N N, N} N 41, N)

e B 4 B g 8

N

5 0.1770229 027331 0.1770722 0.27420 0.1771131 0.27507
6 0.177 1195 0.27523 0.1770967 0.27469 0.177 1067 027493
7
g

0.1771087 027498 0.1771161 027517 0.1771270 0.27552

Q1771320 027572 0.1770209* 027662* Q1771414 027612
9 01771430 0.27647 0.177 1294 0.27559 0.1771369 0.27591
10 01771391 0.27601 0.1771352 027584 0.177 1356 0.27585
11 0.1771357 027586 0.1771344* 027580 (0.1771399 0.27609
iz 01771412 027619 0.1771381 027598 0.1771395 027606
13 01771402 027612 0.1771411 0.27618 0.177 1403 027612
4 01771406 Q27614 Q1771404 027641 01771403 0.Z7612%
13 0.1771405 027613 0.177 1408 027616 0.177 1429 0.27636
16 0.r771390* 027605* 0.1771415 0.27622 0.177 1419 0.27625
17 01771422 0.27629 0.1771418 0.27624 0.1771418 027624
18 01771418 0.27624

The analysis of the series for the honeycomb bond problem yields the results in table 10,
Again we see an upward drift in the estimates for both g, and £ though the estimates are
somewhat more stable than in the previous case. It seems likely that the true critical
parameters lie within the estimates g, = 0.177 143(2) and 8 = 0.2763(2).

Finally we analysed the series for the honeycomb site problem, with the results tabu-
lated in table 11. As in the square site case there is a very pronounced upward drift in the
estimates for both ¢, and 8. It seems likely that the true critical parameters lie within the
estimates g, = 0.160067(5) and g = (0.2763(4). We note that the expected relation between
the values of 4. for the square site and honeycomb site problems, g52 = 2¢#€ — (g#¢)?,
is clearly fuifilled by the estimates. This inspires some confidence in the appropriateness
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Table 11, Diog Padé approximants to the percolation series for directed site percolation on the
honeycomb lattice.

e v, N] N+ LN]

L2 B g 8 ge #

0.1598159 027017  0.1599573 027265  0.1599491 027249

0.1599269 027203  0.1599516 027254  0.1599487* 0.27248*
0.1600181 027416 01600409 027485  0.1600545 027532

01600656 027577 01600476 027507  0.1599682  0.27195

0.1600378 0.27473  0.1600457 027501 01600452  0.27499

10 0.1600453 027499 01600456 027501 0.1600555 027543

11 0.1600280% 027462* 01600711 027640  0.1600597 027565

12 01600498 027515  0.1600630 027585  0Q.1600630  0.27585

13 01600630 027585  0.1600630 027585 01600622 027580

14 01600620 027579 01600625 027582  0.1600636 027589

15 0.1600630 027585  0.[600622% 0.27580¢ Q.I600391*% 0.27665*
16  0.160064 1 027593 01600656 027606  0.1600647  0.27597

17 01660650 0276060  G.1600655 027604 01600662  0.276 1t

18 01600688 027642  0.1600662 027611

O 0o -3 ChoLh >

of our extrapolation method in general and our error estimates in particular.

4.2. The critical amplitudes

From the leading critical behaviour, P{g) ~ A(l — g/g.)f, it follows that (g, — 4)
P~V8| oy ~ A~V So by forming the series for G(g) = (g. —g)P~"/# we can estimate
the critical amplitude 4 from Padé approximants to G evaluated at g.. The procedure works
well but requires knowledge of both g, and f. For the square bond series we know both
g and B very accurately, and we have estimated A using values of g, between 0.355299
and 0.3553 and values of § ranging from 0.2764 to 0.2765. For each (g, ) pair we
calculate A as the average over all [N + K, N] Padé approximants with K = 0, &1 and
2N + K > 45. The spread among the approximants is minimal for g. = 0.3552994,
B = 0.27643, where A = 1.3291475(2). Allowing for values of 4. and B within the full
range we get A = 1.3292(5).

For the square site series we used values of g, from 0.294 51 to0 0.29452 and 8 from
0.2761 to 0.2765, averaging over Padé approximants with 2N + K 2> 27. In this case the
spread is minimal for g, = 0.294515, B = 0.2763 with A = 1.425164(5). Again allowing
for a wider choice of critical parameters we estimate that A = 1.425(1).

For the honeycomb bond series we restricted g, to lie between 0.177 138 and 0.177 148
and B between 0.2761 to 0.2765, using all approximants with 2N + K > 26. The minimal
spread occurs at g, = 0.177 143, 8 = 0.27635, where A = 1.10607(2). A wider choice
for g, and B leads to the estimate A = 1.106(1).

Finally in the honeycomb site case we used values of g, in the range 0.160065 to
0.160075 and 8 from 0.2761 to 0.2765, using all approximants with 2N + K > 27.
The minimal spread occurs when g, = 0.160069, § = 0.2764, where A = 1.167 79(2).
With the wider choice of critical parameters we estimate that A = 1.167(1). The exact
relation (3) between the square and honeycomb site problems means that there is a simple
relation between the amplitudes in the two cases. First note that A#(1 — g/q. 5)? ~
PH{gy = (1 -g)P5(2g — g%) ~ (1 — g)(} — (2¢ ~ g*)/qc.5)P. Since g5 =2g. 1 — G2,
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we find that, (1 — (29 — 49/40.5)° = [(Ge.tt — 9)(2 = 4e.8 — 4)/Gc.51P, and therefore
A¥ = (1 - g Q2 — 200809, 1/9c,51P AS = (1 — o)1 — g2 1 /qc.5)P A5, Insertions of
the various critical parameters shows that this relation is indeed satisfied by our amplitude
estimates.

A second method, proposed by Liu and Fisher (1989), for calculating ¢ritical amplitudes
starts by assuming the functional form P(g) ~ A(g)(1-g/q.)*+B(g). One then transforms
this function into g(g) = (1 — q/q:.) P P(q) ~ A(g) + B(g)(1 — q/q.)~*. The required
amplitude is now the background term in g{(g), which can be obtained from inhomogeneous
differential approximants (Guttmann 1989, p 89). In table 12 we have listed the estimates
obtained by averaging over various first-order differential approximants, using at least 40
terms of the series for the square bond case and at least 25 terms in the other cases. The
critical parameters g, and B, used in the transformation of the series, were the central
values of the estimates froin the previous section. This method generally yields slightly
lower estimates for the amplitudes and the spread among the approximants is much larger
than in the first method.

Table 12, Critical amplitudes 4 for the four percolation problems obtained by using the
method of Lin and Fisher (1989). The estimates were calculated by averaging over vatious
inhomogeneous differential approkimants of order L.

L 5Qbond SCsite HC bond HC site

129661 141614 111520 116740
131234 135775 112002 116579
131114 139989 112001  1.16607
131218 137739 111952 116564
131098  1.39359 111750  1.16546
1.31006  1.39001 1.11808 116521
132566  1.39889 111856  1.16486
130916  1.39582 111929  1.16537
1.31322 139162 111929 116534
10 131122 139449 1.11780 1.16508
11 131195 140570 1.12056 116578
12 131228 140306 1.12435  1.16462

AT-RE-CRES BN SRV R R LS

4.3, The confluent exponent

We studied the series using two different methods in order to estimate the value of the
confluent exponent. In the first method, due to Baker and Hunter (1973), one transforms
the function P{g) = Y[, Ai(l — q/qc)™ = ¥ jona.q™ into an auxiliary function with
simple poles at 1/x;. We first make the change of variable g = ¢.(1 — e™*) and find, after
multiplying the coefficient of ¢* by k!, the auxiliary function

N (=) B N Ai

F() = ALY = 18

@ ;g i0d) ;1_1@ (18)

which has poles at { = 1/A; with residue —A; /%;. The great advantage of this method (when
it works) is that one obtains simultaneous estimates for many critical parameters, namely 8,
A and the critical amplitude, while there is only one parameter, g,, in the transformation.
In figure 4 we have plotted, respectively, 8 and A as a function of the transformation
parameter g, for various {N £+ X, N] Padé approximants, with N 2 25. For each ‘guess’
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Figure 4, The critical exponent § and confluent exponent A as a function of the parameter g,
in the Baker—Hunter transformation for the square bond series.

for g., we performed the Baker—Hunter transformation and located the numerically largest
and next-largest poles, which are the estimates for the reciprocals of —8 and —(8 + A),
respectively, The majority of the approximants have a very parrow crossing region close
to g, = 0.3552996(3), with § = 0.27645(3) and A = 1.000(5). In table 13 we have
listed the estimates for B, A and the comresponding critical amplitudes obtained from the
Baker-Hunter transformed series with g. = 0.355299 6. The results strongly suggest that
the leading cormrection to scaling term is analytic. Furthermore, we note that the estimates
for the critical amplitudes fully agree with those obtained from the first method used in the
previous section.

Table 13. Estimates for the critical exponent 8, critical amplitude A, confluent exponent A
and confluent amplitude A x ap, obtained from [N, M] Padé approximants to the Baker-Hunter
transformed square bond series with g, = 0.3552596,

N M B A A Axas

22 23 027645 132925 100097 1.03202
23 23 027646 132930 100013 103029
24 23 027863 132369 0.9843% 101224
23 24 027645 132925 100090 1.0318]
24 24 027647 132931 095994  1.02993
25 24 027549 133100 101375 LO5322
4 25 027645 132926 1.000678 1.03149
25 25 027648 132935 099922 102857
26 25 027589 133038 1.00698 1.04048
25 26 0.27645 132926 1.00064 1.03114
26 26 0.2764% 132936 099906 102826
27 26 027617 132992 1.00305 (03410
26 27 027645 132928 1.00037 103052
27 27 027649 1.32936 D.5521) 102836

In the second method, due to Adler e &l (1981), one studies Dlog Padé approximants
to the function G(g) = BP(g) + (9. — ¢) dP(g)/dg. The logarithmic derivative to G(g)
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has a pole at g, with residue 8 + A. We evaluate the Dlog Padé approximants for a range
of guesses for ¢, and 8. For each such guess we thus find an estimate for A; for the correct
value of g, and 8 one would expect to sec a convergence region in (g, 8, A)-space. In
practice we always froze either g, or £ and examined A as a function of the other parameter,
Figure 5 shows, respectively, A as a function of ¢, with § = 0.27643 and A as a funciion
of 8 with g. = 0.3552994. This analysis clearly supports A = I, and thus that there is no
sign of any non-analytic corrections to scaling.

11 - - - 11
105 -\‘ M : 105 |
5. . s
: [
1 ".0'
o NS |
37
<o &
>0 &
LI " 0.95 { s ",
. ) s .
i . o N -
% % v J -
Pl L1 o .
['.' S s, s )
09 S L ma L 'y —he ) e
035529 0355295 03553 0355305 035531 0.2763 0.2764 02765 02766
q B

(4

Figure 5. The confluent expoment A as a function of, respectively, the parameter g, (with
£ = 0.27643) and the parameter 8 (with g, = 0.3552994) using the method of Adler et af
(1981).

For the square site series the results from the Baker—Hunter transformation is less
conviacing, as there is no value of g, at which the various aptrroximants cross. If we look
closely at the approximants evaluated at g, = 0.294 515 we find, generally speaking, that
only the [N — 1, N] approximants yield estimates of B close to the expected value with
correspanding estimates for A consistent with an analytic correction. The method of Adler
et al (1981) confirms that A =~ 1,

In the honeycomb bond case several of the approximants to the Baker—Hunter
transformed series have a crossing for g, = 0.177 144(1), # = 0.2767(1) and A = 0.89(2),
though it should be noted that the scatter is quite large. When we analyse the series using
the second method we find that, for g, and 8 close to the ceniral values from the Dlog Padé
analysis, a value of 1 for A is fully compatible with the results.

5. Conclusion

In this paper we have presented extended series for the percolation probability for site and
bond percolation on the square and honeycomb lattices. The analysis of the series leads
to improved estimates for the percolation threshold (particularly for the honeycomb bond
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problem} and the order-parameter exponent f. To summarize we estimate that
g. = 0.3552994(10) B =027643(10) A = 1.3292(5) square bond problem

g = 0.294515(5) B =0.2763(3) A = 1.425(1) square site problem
g = 0.177 143(2) B = 0.2763(2) A = 1,106(1) honeycomb bond problem
q. = 0.160067(5) B = 0.2763(4) A = 1.167(1) honeycomb site problem.

The estimates for g = 1 — p. for the square bond and site problem are in excellent
agreement with those obtained by Essam er al (1986, 1988), g, = 0.355303(6) and
g. = 0.294 51(1), respectively. The estimates for 8 clearly show, as one would expect, that
all the models studied in this paper belong to the same universality class. The value of 2 does
not suggest any simple fraction, Indeed, around the central value for 8 (square bond), we

find only four fractions with denominators less than 1500. They are: f—é =0.276422,..,

B = 0276429..., 1 = 0.276433... and &} = 0.276435.... None of these are
remotely compelling, and leave open the question as to why this apparently simple problem
has such an ugly exponent. This does seem to be a frequent characteristic of directed
problems, as evidenced by the recent smdy of the longitudinal size exponent of square lattice
directed animals (Conway and Guitmann 1994) in which it was found that vy = 0.81722(5),
a result which suggests no simple rational fraction, Finally, we note that none of the series
show any evidence of non-analytic confluent correction terms. This provides a hint that the
model might be exactly solvable.
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