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Series expansions of the percolation probability for 
directed square and honeycomb lattices 

Iwan Jensen and Anthony J Guttmahnt 
Department of Mathematics, University of Melbourne, Parkville. Victoria 3052. Australia 

Received 18 April 1995 

AbstracL We have derived long series expansions of the percolation probability for site and 
bond percolarim on d i ~ c t e d  square and honeycomb lattices. For the square bond problem 
we have extended the sedes from 41 t e m  10 54. for the s q n m  site pmblem fwm 16 
terms to 37, and for the honeycomb bond problem from 13 tem to 36. Analysis of the 
series clearly shows that the critical exponent ,6 is the same for all lhe ,problems, confirming 
expenadow of universality. For the aitical probability and exponent we h d  in lhe square 
bond care, qc = 0.3552994 * O.OOOWl0, p = 027643 iO.OW10. in the square site 
case qc = 0.294515 f O.WOOO5. ,6 = 0.2763 f 0.0003; and in the hooeycomb bond case 
qc = 0.177 143 f O.OW002, ,6 = 0.2763 * O.OW2. In addition we have obtained accurate 
estimates for the critical amplitudes. In all cases we find that the leadiiog correction to scang  
term is analytic, i.e. the confluent exponent A = 1. 

1. Introduction 

Directed percolation (DP) was originally introduced by Broadbent and H-ersley (1957) 
as a model of fluid flow through a random medium and has since been assocrated with 
a wide variety of physical processes. In sruric interpretatlons, the prefeiied direction is a 
spatial direction, and DP could represent the percolation of fluid through porous rock with 
a certain fraction of the channels blocked (De'Bell and Essam 1983b). crack propagation 
(Kerthsz and Wscek 1980) or electric current in a diluted diode network (Redner and Brown 
1981). In dynumicul interpretations, the preferred direction is time, 'and'DP is iiiodellea by a 
stochastic cellular automaton (Kinzel 1985) in which all lattice sites evolve simultaneody 
and the main interpretation is as an epidemic without immunization (Harris 1974, Liggett 
198.5). The behaviour of these models is generally controlled by a single parameter p ,  
which could be the probability that a channel is open or the infection probability, depending 
on one's favourite interpretation. 

When p is smaller than a critical value pc,  the fluid does not percolate through the 
rock (the epidemic dies out). Let P ( p )  be the probability that the wetted region percolates 
infinitely far from the source (the ultimate survival probability in epidemic language) then 
one expects: 

(1) 

DP-type transitions are also encountered in many other situations, perhaps most 
prominently in Reggeon field theory (Grassberger and Sundermeyer 1978, Cardy -and Sugar 
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1980), chemical reactions (Schlogl 1972, Grassberger and de la Torre 1979), in numerous 
models for heterogeneous catalysis and surface reactions (Ziff et a1 1986, Kohler and ben- 
Avraham 1991, Zhuo et a1 1993, Jensen 1994), self-organized criticality (Obukhov 1990, 
Paczuski et ul 1994) and even galactic evolution (Schulman and Seiden 1982). This short 
and far from complete list clearly demonstrates that directed percolation is a problem which 
emerges in a diverse set of physical problems and therefore deserves a great deal of attention. 

In this paper we discuss series expansions for the percolation probability on directed 
square and honeycomb lattices. The earliest series expansion for the square bond problem 
was the eight terms calculated by Blease (1977). A great improvement was due to Baxter and 
Guttmann (1988) who extended this series to 41 terms. For the honeycomb bond problem, 
Onody (1990) obtained a 13-term series and for the square site problem the longest series of 
16 terms is due to Onody and Neves (1992) improving the previous record of 10 terms held 
by De’Bell and Essam (1983a). Using the finite-lattice method pioneered in this context 
by Baxter and Guttmann (1988) we have extended these series to 54 terms for the square 
bond problem, 37 terms for the square site problem and 36 terms for the honeycomb bond 
problem. The percolation probability for the honeycomb site problem is related very simply 
to that of the square site problem, P H C ( p )  = P s Q ( p z )  @har er a1 1982, Essam and De’Bell 
1982). Note also that bond percolation on the honeycomb lattice may be viewed as site- 
bond percolation on the square lattice (Essam and De’Bell 1982). In passing, we note that 
long series have been obtained for the moments of the pair connectedness for the site and 
bond problems on square and triangular lattices (Esam ef al 1986, 1988). 

2. The finite-lattice method 

We wish to calculate the series expansion of the percolation probability on square and 
honeycomb lattices oriented as in figure 1. We shall consider both site and bond percolation 
on these lattices. In site (bond) percolation each site (bond) is independently present with 
probability p and absent with probability q = 1 - p .  Two sites are connected if one can 
find a path passing through occupied sites (bonds) only, while always following the allowed 
directions. For an infinite system, when q is less than a critical value qc. there is an infinite 
cluster spanning the lattice. The order parameter of the system is the percolation probability 
P ( q ) .  i.e. the probability that a given site belongs to the infinite cluster. Note that a path 
passing through a given site can only lead to the sites shown in figure 1 below the origin 
0. This naturally leads one to consider a finite-lattice approximation to P ( q ) ,  namely the 
probability PN(q) that the origin is connected to at least one site in the Nth row. P,(q) 
is a polynomial in q with integer coefficients and a maximal order determined by the total 
number of sites (bonds) that may be present on the finite. lattice. 

I Jensen and A J Gurtmann 

0 0 

N = 2  ................. ................................. 
I.._ .................... 

............... 

Figure 1. 
The rows 

d iwted  square and honeycomb lauices with orientalion given by the mows. 
labelled according IO the text. 
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It has been proved (Bousquet-MClou 1995), for all the problems considered in this paper, 
that the polynomials P N ( q )  have a formal limit in the algebra of formal power series in 
the variable q, and therefore P(q)  = limNAm pN(q). In aU cases one finds that PN(q)  
converges to P ( q )  in such a way that the first N (or N - 1 depending on the specific 
problem) terms of the poIyno,nials pN(q) coincide with those of P(q) .  

2.1. Spec$cation of the models 

In order to calculate P N ( ~ )  we associate a state uj with each site, such that cr. - 1 if site 
j is connected to the Nth row and U, = - I  otherwise. We shall often m t e  + f - for 
simplicity. Note that a site can be in state -1 even though, in the case of site percolation, 
it is itself occupied, or, in the case of bond percolation, bonds emanating from the site are 
present. Let 1 ,  r denote the sites below I as in figure 1.  We then define the triangle weight 
function W(u,lul+ U,) as the probability that the top site f of the triangle is in state U $ ,  given 
that the lower sites I to the left and r to the right are in states U, and or, respectively. One 
can then prove (Bidaux and Forgacs 1984, Baxter and Guttmann 1988) that 

:- 

where the product is over all sites j of the lattice above the Nth  row. The sum is over all 
values & I  of each ut, other than the topmost spin 61 which always takes the value +I .  The 
spins in the Nth TOW are fixed to be + 1. In short &(q)  is calculated as the sum over all 
possible configurations of the probability of each individual configuration. 

Table 1. The triangle weight functions for lhe various direcled percolotion problems. Generally 
one has W(-lul.u,) = 1 - W(+lu,,u,), 

Problem W(+l+,+) W ( t I i . - ) =  W(t I - ,+ )  W(+I-.-) 

Se-bond 1 - q 2  1 - q  0 
HC-bond ( I  - q)(1 - 4') (1 - 4)' 0 
SQ-site I - q 1 - P  0 
HC-site (1 - q)z  (1 - q P  0 

The weights W are listed in table 1. Obviously, W(-/uf, oj) = 1 - W(+lur, ur). The 
remaining weights are easily calculated by considering the various possible arrangements of 
states and bonds. W(+I-, -) = 0 because the top site is connected to the Nth row if and 
only if at least one of the neighbours is connected. Let us next look at the remaining s q w e  
bond weights, W(+l+, +) = 1 -q2 because the only bond configuration nor allowed is both 
bonds absent which has probability q2.  Finally, W(+(+, -) = W(+l-, +) = I-q because 
the bond connecting the two + states has to be present, which happens with probability 
p = 1 - q ,  and the other bond can be either present or absent. For the honeycomb bond 
problem we find that WHc(+1uf, U,) = (1 - q)N'sQ(+lur. U,) because if the top state is 
+1 the vertical bond has to be present. Note that one can think of the honeycomb bond 
problem as site-bond percolation on the directed square lattice where both sites and bonds 
are present with equal probability (Essam and De'Bell 1982). For the square site problem 
the weights are a little simpler since a site can be in state +1 only if it is present and W 
picks up only the probability of the top state, therefore W(+l-, -) = 0 as before and all 
the other weights with a + I  top state are equal to 1 - q. The honeycomb site weights 
are derived from the square site weights in the same manner as for the bond case. Note 
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that it is customary to assume in site percolation problems that the origin is present with 
probability 1. 
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For the square and honeycomb site problems we therefore find 

The weights W(u,,lq, U,) are those of table 1 and WO is the weight of the topmost triangle. 
It is clear from table 1 that for the sire problem W H C ( q )  = Wse(2q - q'). Since the 'top' 
weights are 1 for the square site problem and 1 - q for the honeycomb site problem we 
find that 

P l C ( q )  = (1 - q)P,y(l - (1 - q)2 )  (3) 

which is essentially the relation mentioned in the introduction, derived from the work of 
Dhar eta1 (1982) by Essam and De'Bell (1982). 

2.2. Series expansion algorithm 

For small N it is quite easy to calculate P,v(q) by hand, but for larger N one obviously 
has to resort to computer algorithms. The algorithms are basically implementations of a 
transfer-mahix method. From (2) we see that the evaluation of pN(q) involves only local 
'interactions' since the weights involve only three neighbouring sites. The sum over all 
configurations can therefore be performed by moving a boundary line through the lattice. 
At any given stage this line cuts through a number of, say m, lattice sites thus leading to 
a total of 2"' possible configurations along this line. Any configuration along the line 
is trivially represented as a binary number by letting the rth bit of the number equal 
(0; + 1)/2. For each configuration along the boundary line one maintains a (truncated) 
polynomial which equals the sum of the product of weights over all possible states on 
the side of the boundary already traversed. The boundary is moved through the lattice 
one site at a time. In figure 2 we show how the boundary is moved in order to pick 
up the weight associated with a given triangle at position r along the boundary line. Let 
SO = (XI,. . . , & - I ,  O,x,+l,. . . , x m )  be the configuration of sites along the boundary with 
0 at position r and similarly S1 = ( X I , .  . . , xr-lq 1, & + I , .  . . , x,) the configuration with 1 
at position r. Then in moving the rth site from the bottom left to the top of the triangle we 
see that the polynomials associated with these configurations are updated as 

P(S0) = W(OlO,X,-l)P(SO) + W(O~l,Xr-,)P(Sl) 
P(S1) = iV(IIO,X,-])P(SO)+ iv(1~l,x~~,)P(sl). (41 

The calculation of PN(q) by this method is limited by memory, since one needs storage 
for ZN-' boundary configurations. To alleviate this problem one can introduce a cut into 
the lattice, fix the states on this cut, evaluate the lattice sum P,$(q) for each configuration 
C of the cut, and finally get PN (q) = Cc P,$(q) as the sum over all configurations of the 
cut. By placing the cut appropriately, the growth in memory requirements can be reduced 
to 2N/z. Obviously the finitelattice calculation for different configurations of the cut are 
independent of one another and these algorithms are therefore perfectly suited to take full 
advantage of modem massively parallel computers. In the following section we give a few 
more details of the algorithms we have used. 
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Figure 2. part of the diRcted square lattice with the present boundary indicated by open circles. 
AI1 weights to the left of this boundary have been summed. The weight of Ihe triangle @"en by 
(x,.x:,x,-~) is picked up by moving the boundary from X, to x: and updating the associated 
polynomials according to equatioo (4). 

2.2.1. The bond-problem algorithm A very efficient algorithm was devised by Baxter for 
the square bond problem (Baxter and Guttmann 1988). All we had to do for the present 
work was basically to parallelize the algorithm in order to fully utilize the Intel Paragon 
at Melbourne University. The algorithm is based on an ingenious transformation of the 
square bond problem onto a honeycomb lattice. This is done by noting that the square bond 
weights can be written as 

where 

(6) 
f(+, +) = -1 
g(+, +) = 4 

j(+, -) = j(-, +) = 1 j(-* -) = 0 
g(+, -) = g(-, +) = g(-, -) = 1 .  

This means that if we replace each upwards-pointing triangle in figure 1 by a three- 
pointed star, arriving at the honeycomb lattice of figure 3, then 4 ( q )  can be calculated 
from this lattice by assigning weights f(u;,u,) to vertical edges (i, j) and g ( q , u j )  to 
non-vertical edges. 

0 

A 

X \ R Y 

Figure 3. The m f o r m e d  lattice used in the square bond algorithm. The rites marked with the 
full circles on the cut-line SR are Kxed. 

A cut of length L is introduced along the line RS in figure 3 and the transfer-matrix 
technique is used to build up the lattice to the left of RSO, starting from XR and working 
upwards to OS. The lattice is symmetrical around the central axis RSO and one can therefore 
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obtain the lanice sum for the whole lattice by forming the sum of the squares of each 
boundary line polynomial. After this operation, the whole lattice is summed except for 
the edges on the centre-line. So finally one has to multiply the (squared) boundary line 
polynomials by the weights of these edges. This is where the great advantage of the 
transformation becomes clear. Because f(-, -) = 0 we need never consider configurations 
of the cut (or parts of the boundary line in the vertical position) which have any (-, -) edge. 
This basically means that the number of configurations of the cut which contribute to pN(q) 
grow only like 3L/2 rather than the usually expected 2‘. The transformation thus provides 
us with an exponentially faster algorithm. Likewise, as parts of the boundary line enter 
the vertical position, no (-, -) edges need to be considered, which leads to a significant 
reduction in the length of the cut for a given amount of memory. The memory requirement 
for the algorithm is governed by the maximal extent of the boundary line, which is at XR, 
and hence grows like ZNlz-*.  With this algorithm we calculated pN(q) for N 4 39. Since 
the integer coefficients occuring in the series expansion become very large the calculation 
was performed using modular arithmetic (see, for example, Knuth 1969). Each run, using 
a different modulus, took approximately 24 hours using 50 nodes on an Intel Paragon. 

Virtually the same algorithm can be used for the honeycomb bond or site-bond square 
problem except that the f weights have to be replaced by 

(7) 

Since f(-,-) no longer equals 0, obviously the great advange of the original 
transformation vanishes and the number of configurations of the cut grow l i e  Z L .  For 
this reason we had to stop calculating P , ( q )  at N = 33, where each modulus required 
about 32 hours of CPU time using 50 nodes. 

I Jensen and A J G u t t m  

f(+, +) = -(I - 4) f(+. -) = f(-, +) = 1 - q f ( - , - ) = q .  

2.2.2. The site-problem algorithm. For the site problem the growth in memory can be 
limited to ZN/’-’ by introducing a cut across the lattice at row N / 2 .  The upper part of the 
lattice is built up first by the transfer-matrix technique, yielding a partial lattice s u m  P$ 
and then the lower part Pf is done. The total lattice sum for a given cut P,$ is simply the 
product of these, i.e. p,$ = ~ f p i .  Again pN(q) is the sum over configurations of the 
cut. It might seem that the numbers of cuts grow as Z N I Z .  Substantial simplifications can, 
however, be obtained. Note first of all that there is symmetry around the central vertical line, 
which basically reduces the number of cut-configurations by a factor of 2. A more subtle 
means of reducing the number of cuts is obtained as follows. Since all triangle weights 
with at least one + on the bottom are the same, it follows that for any two configurations 
C and C’, which can be turned into one another by changing any number of i s  to -s 
wickour adding or removing any (--) sequences, Pi = Pi’. This means, for example, 
that for any cut C without (--) occurences, Pg equals the partial sum of the all +s cut. 
It is possible to use this property to perform the lower lattice sum simultaneously for many 
cuts. As an example consider cuts starting with ++ and -+ but which otherwise are the 
same. The upper part is the same and the lower part is also the same except for the weight 
of the left-most triangle on the cut. By considering the various possibilities when moving 
the boundary line across this point, one can easily see that the two configurations can be 
summed simultaneously, i.e. the -+ cut can be made as part of the ++ cut. We calculated 
pN(q) for N < 32, which took about 48 hours for each modulus with N = 32 using 50 
nodes. 

We also calculated the series expansion for the honeycomb site problem up to &(q). 
Although we know the exact relation between the two site problems (3). this calculation 
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provides us with an extra check of the algorithm and the extrapolation formulae we shall 
discuss presently. 

3. Extrapolation of the series 

As mentioned fN(q)  will generally agree with the series for P(q)  up to some order 
determined by N. For the square bond problem the coefficients of pN(q) = xm>oaN.mqm 
agree with those of P ( q )  = xm>oamqm to order N. Baxter and Guttmann (1988) found 
that the series for P ( q )  can be extended considerably by determining the correction terms 
to pN(q). Let us look at 

Then we shall call dN,, = aN.N+, -aN+L,N+, the rth correction term. Obviously if one can 
find formulae for dN., for all r < K then one can use the series coefficients of PN(q) to 
extend the series for P ( q )  to order N + K since 

k 

aN+k aN.N+x - dN+k-m,m (9) 
m=1 

for all k < K. That this method can be very efficient was clearly demonstrated by Baxter 
and Guttmann, who identified the first 12 correction terms and used P29(q) to extend the 
series for P ( q )  to 41 terms. To really appreciate this advance one should bear in mind that 
the time it takes to calculate pN(q) grows exponentially with N, so a direct calculation 
correct to the same order would have taken years rather than days. In the following we will 
give details of the correction terms for the various cases. 

3.1. The square bond case 

The first correction term for the square bond case is given by the Catalan numbers 

dN.1 = CN = (ZN!)/N!(N + I ) !  (10) 
a result which was proved (Bousquet-M6lou 1995) by noting that the correction term arises 
from compact bond animals of directed height N and perimeter N+1. The second correction 
term 

(11) 

was also calculated exactly recently (Bousquet-M&lou 1995). As noted by Baxter and 
Guttmann (1988) the higher-order correction terms dN,, can be expressed as rational 
functions of the Catalan numbers. We have found that dN,, can always be written in 
the form 

dN.2 = 2CN - cNt1 

where m = max(0, r - 4 - 2k). These formulae hold for all available N ,  provided that 
only Catalan numbers cm with m > 0 are involved. As noted by Baxter and Guttmann it 
is also true for m = -1 provided one ‘defines’ c-1 = -1 (there was a misprint at this 
point in the original article). Thus the extrapolation formulae are m e  for N > r - 4. For 
r < 15 the coefficients A,,x and B,,j are either integers or fractions with small (two or 
five) denominators. Note that there are various relations between the Catalan numbers so 
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there are infinitely many ways of writing (12). For several of the correction formulae the 
generat form adopted in this paper is slightly different from that of Baxter and Guttmann 
(1988) who tried wherever possible to choose a form involving only integers. The trade- 
off for having a general expression for the correction terms is that more rational fractions 
become involved. However, with the proliferation of powerful mathematical packages such 
as MAPLE and MATHEMATICA this trade-off is well worth while. In table 2 we have listed 
the coefficients A,.j and 5,,j for r 6 15. Using these extrapolation formulae and the series 
for Pa&) we have extended the series for P ( q )  to the 54 terms given in table 3. 

3.2. The square site case 

Inspired by the success of the extrapolation procedure for the square bond problem one 
might hope for similar success for other problems. And indeed one can find several of the 
correction terms for the square site problem, although the success is less spectacular as one 
is restricted to the first six correction terms. The first comtion term dN.1 was identified by 
Onody and Neves (1992) and has since been computed exactly by Bousquet-M6lou (1995): 

I Jensen andA J Gurtmann 

(3N)!  
dN'l = N!(2N + I)! 

This expression for the correction term was identified by Onody and Neves (1992) as 
the number of ways of inserting n - 4 sheets through a ball having n vertices on its surface 
such that pairs of sheets meet only on surface curves joining vertices! While this is true, a 
more useful and pertinent interpretation can be given. Viennot (1994) has pointed out that 
this is just the expression for the number of ternary trees of n vertices, which in turn is 
isomorphic to the number of diagonally convex directed animals (Delest and Fkdou 1989). 
It is the identification between these animals and the first correction term that has been 
proved by Bousquet-Mklou (1995). She also proved our formula for the second correction 
term. 

As in the square bond case we can express higher correction terms as a function of 
dN.1. Again, there are infinitely many ways of expressing the formulae for the correction 
terms, one of which is 

where K = N - r + j for r < 4 and K = N - r - 1 + j for r > 5. These formulae 
are correct up to r = 6, whenever N > r. The coefficients are listed in table 4. These 
formulae allow us to extend the series for P(4)  by an additional six terms Io a total of 37 
terms listed in table 5. 

3.3. The honeycomb bond case 

For bond percolation on the directed honeycomb lattice Bousquet-Mklou (1995) proved that 
the generating function f = xNZ1 dN.ltN-' of the first correction term dN.1 is characterized 
by the algebraic equation 

(15) 
t 

f = I + tf + z ( (7  + f )  fZ + f3). 
The higher-order correction terms are given by the formulae 
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Table 3. The meficients a. in the series expansion of P ( q )  = &nnq" for directed-bond 
percolation on the square lanice. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

I 
0 

-1 
-2 
-4 
-8 

-17 
-38 
-88 

-210 
-51 1 

-1 264 
-3 165 
-8006 

-20426 
-52412 

-135682 
-352562 
-920924 

-2414 272 
-63% 565 

-16782444 
-44470757 

-1 18090648 
-314580062 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 46 

47 48 

49 
50 
51 
52 

-16 161 597987 
-43 448 897 41 4 

-117083094 891 
-315709399 172 
-853 195535637 

-2306601 710 190 
-6249350665 825 

-16933569 745 596 
-45982825444918 

-124847 185 166968 
-339715065397631 
-923984791 735474 

-2518 902 151 116167 
-6861776 192406434 

-18 738381 486019497 

- 139 811 976659 987636 
-381 836043 069 041 990 
- 1 046 008 IO4 766 969 784 
-2859 625 985546 910 846 
-7 845 284416715 093 642 

-21 465 842456 693 634778 
-58 976 49 1 160 296 065 655 
- 16 1 476 439 366 532 026 854 
-444 296 I83 37 1 760 430 967 

-51 11s 047622373452 

25 -839 379548 53 - 1 21 7 055 910699 5 12453 538 
26 -2245969218 54 -3353766 967706302949 866 
27 -6017177104 

which we find to be correct for r < 4 and N > 2r - 1. The coefficients are listed 
in table 6 apart from the Ds since the only non-zero ones are D4.1 = -157281/5 and 
04.2 = 1744273/5. The final 36-term series for P(q)  is given in table 7. 

4. Analysis of the series 

We expect that the series for the percolation probability behaves like 

P ( q ) - A ( I  -4/qc)'[I + a A ( l  - 9 / q ~ ) ~ f . ' . I  (17) 

where A is the critical amplitude, A is the leading confluent exponent and the '. . .' represents 
higher-order correction tenns. By universality we expect p to be the same for all the 
percolation problems studied in this paper and we will argue that the dominant correction 
term is analytic, i.e. A = 1. 

In the following sections we present the results of our analysis of the series which include 
accurate estimates for the critical parameters qc, @, A and A. For the most part the best 
results are obtained using Dlog Pad6 (or in some cases just ordinary Pad@ approximants. 
A comprehensive review of these and other techniques for series analysis may be found in 
Guttmann (1989). 
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TaMe 5. The coefficients an in the series expansion Of P(p) = &oa.q" for direaed site 
percolation on the sqwre lattice 

n a. n a" 

0 1 19 -92459524 
1 0 20 -298 142956 
2 - 1  21 -922424269 
3 -3 .  22 -3098690837 
4 -8 23 -9 042 937 I79 
5 -21 24 -34 187 I49573 
6 -56 25 -79 544646085 
1 -154 26 -439 149 878 359 
8 -434 27 -313237 196088 
9 -1252 28 -17864436151 I4 
IO -3675 29 16637473844344 
I I  -10954 30 -207 593240544002 
12 -33044 31 973 114 665769453 
13 -100676 32 -7311741 153076579 
14 -309569 33 43345144201832502 

16 -2987846 35 1867850225746155582 
11  -9330274 36 -12389925641797917900 
18 -29522921 31 814418689128W214904 

15 -957424 34 -~247~87953a946388 

Table 6. The mfficients A,,,, B,J and C,,j in the extrapolation formulae for the honeycomb 
bond oroblem. 

1 -86 10954; - 2 7 7 3 4 6 4 s  14; -5696% 814389% -12% 1753g -86965% 
2-67g 87495% -24330909% 545 -48502% 7805538% -141; 19295& -1 118660% 
3 -3; 1831% 415040% 4 6  -292h - 4 2 4 9 d 5 3  12% -1663g 224312g 
4 593& -276663; -616& 98675g 
5 ffig -56787i 23; 313758 
6 1; -8311% 5 ;  9476; 
7 -6464 871g 
8 -315; -187; 

4.1. qe and 6 

In table 8 we show the Dlog Pad6 approximants to the percolation probability series for 
bond percolation on the directed square lattice. The defective approximants, those for which 
there is a spurious singularity on the positive real axis closer to the origin than the physical 
critical point, are marked with an asterisk. The overwhelming majority of the approximants 
cluster around the values qc = 0.3552994 and f3 = 0.27643. As always in this type 
of analysis it is very difficult to accurately judge the true errors of the estimates of the 
critical parameters, however we venture to say that the critical parameters lie in the ranges 
qc = 0.3552994(10) and p = 0.27643(10), where the figures in parentheses indicate the 
estimated error on the last digits. The other remarkable feature of table 8 is that surprisingly 



4826 I Jensen and A J Gunmnnn 

Table 7. The coefficients an in Ihe series expansion of P ( 9 )  = xnwan9" for directed bond 
percolation on the honeycomb lattice 

n a. n a. 

0 1 19 -1 103369168956 
1 -1 20 -5771 541 600014 
2 -4 21 -31 153472926184 
3 -12 22 -160 153702442390 
4 -45 23 -907425 183 546587 
5 -188 24 -4317291410619157 
6 -835 25 -28433248376749 141 
7 -3849 26 -99125481 158184567 
8 -18242 27 -1 076035285 073 833 314 
9 -88265 28 -238091 850291 444337 
10 -434295 29 -58631 611 223043 405378 
I I  -2165198 30 279283045229982597450 
12 -10915089 31 -4730770444 199592 196256 
13 -55534781 32 40 182 669640 102878 093 220 
14 -284708699 33 -480633574529 182764438221 
15 -1470350760 34 4852667371 105928333619923 
16 -7 628363213 35 -53 829647651 783620888423 836 
17 -39878267745 36 574209696 I29704803372604206 
18 -208458228964 37 

Table 8. Dlog Pad6 approxlmmts to the permlation series for directed bond percolation on the 
sauare lacice. 

IN - 1. NI IN. NI [ N + I . N I  

N 4r B 4r B 4r B 
I t  0.3553000 0.27645 0.3553030 0.27653 0.3553023 
12 0.355301 6 0.27649 0.355301 1 027648 0.3552997 
13 0.355 3028* 0.27652* 0.355 3004 0.27646 0355 3000 
14 0.3552994 
15 0.3552991 
16 0.3552994 
17 0.3552994 
18 0.3552994 
19 0.3553002' 
U) 0.3552994 
21 0.3552994 
22 0.3552994' 
23 0.355 2994* 
24 0.355 299 3' 
25 0.3552993. 
26 0.3552991' 
27 0.355 2993* 

0.27643 
0.27642 
0.27643 
02.7643 
0.27643 
0.27643* 
027643 
0.27643 
0.27643' 
0.27643* 
0.27643* 
027643* 
0.27643' 
0.27643' 

0.355 297 2 
0.355 299 4 
0.3552994 
0.3552994 
0.3552992 
0.355299 1 
0,3552994 
0.3552994 
0.355 2994' 
0.355 2994 
0.3552993' 
0.3552997 
0.355 2990' 

0.276 34 
027643 
0.27643 
0.27643 
0.27642 
0.27641 
0.27643 
0.27643 
0.27643* 
0.27643 
0.27643* 
0.27645 
0.27643* 

0.3552995 
0.3552994 
0.3552994 
0.355 299 7' 
0.355 298 3 
0.355 299 6' 
0.3552994 
0.3552994* 
0,3552994* 
0.355 2994 
0.355 299 5 
0.3552995* 
0.3552986* 

0.276 5 I 
0.27644 
0.27645 
0.27643 
0.27643 
0.27643 
0.27644* 
0.276 32 
0.27661" 
0.27643 
0.27643* 
0.27643' 
0.27643 
0.27644 
0.21644' 
0.27641* 

many of the high-order approximants are defective. 
The results of the analysis of the series for the square site problem are listed in table 9. 

In this case there is a marked upward drift in the estimates for both qc and 0 and the 
estimates do not settle down to definite values. It  does, however, seem likely that the true 
critical parameters lie withii the estimates qc = 0.294515(5) and 6 = 0.2763(3). 
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Table 9. Dlog Pad6 approximants to the percolation series for directed site percoladon on the 
square lattice. 
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IN - 1. NI IN. NI [N + 1. NI 

N QC B 4r 

5 0.2919337 0.26881 0,2943291 
6 0.2942670 0.27190 0.2943175 
7 0.2944168 0.27393 0.2944521 
8 0.2945135 0.27585 0.2944742 
9 0.2944599 0.27465 0.2944720 
IO 0,2944753 0.27498 0,2944656' 
11 0.2945228 0.27655 0.2945156 
12 0.2945246* 0.27662" 0.2945060 
13 0.294 505 8 0.275 85 0.294 506 1 * 
14 0.294505 1 0.27578 0.294505 1 
15 0.2945056 0.27584 0.2945047' 
16 0.2945069 0.27589 0.2945096 
17 0.2945090 0.27599 0.2945095 
18 0.2945134 0.27625 0.294511 1 

B 
0,27266 
0.27252 
027453 
0.27495 
0.274 90 
0.27478* 
0.27623 
0.275 86 
0.27586* 
0.27582 
0.27581" 
0.27602 
0.27601 
0.276 I1  

4r 

0.2942979 
0.294 269 9* 
0.2944777 
0.2944794* 
0.294 473 9 
0.2944942 
0.2945020 
0.2945058 
0.294 5041 

0.294503 2* 
* 

0.294 5089 
0.294 51 13 

B 
0.27228 
0.271 99* 
0.27502 
0.275 05* 
0.274 94 
0.27546 
0.27571 
0.275 85 
0.275 81 

0.275 76* 
0.275 98 
0.276 12 

* 

Table IO. Dlog Pad6 approximan@ to the percolation series for directed bond percolation on 
the honeycomb lartice. 

IN -] ,NI IN. NI [N + I .  NI 

N 4c B 9 r  B 4c B 
5 0.1770229 0.27331 0.1770722 0,27420 0.1771131 0.27507 
6 0.177 1195 0.27523 0.1770967 0.27469 0.177 1067 0.27493 
7 0.1771087 0.27498 0.1771161 037517 0.1771270 0.27552 
8 0.1771320 0,27572 0.1770209* 0.27662* 0.1771414 027612 
9 
10 
I1 
12 
13 
14 
15 
16 
17 
18 

0.177 I480 
0.177 139 1 
0.177 1357 
0.177 1412 
0,177 1402 
0.177 1406 
0.177 1405 
0.177 1390* 
0.1771422 
0.177 141 8 

0.27647 
0.27601 
0.275 86 
0.276 19 
0.276 I2 
0.276 14 
0.276 13 
027605' 
0.27629 
0.27624 

0.177 1294 
0.177 1352 
0.177 1344* 
0.177 138 1 
0.177 141 I 
0.177 1404 
0,1771408 
0.177 1415 
0.177 141 8 

0.27559 
0.27584 
0.275 80' 
0.27598 
0.276 18 
027641 
0.276 16 
0.276 22 
0.27624 

0.177 1369 
0.177 1356 
0.177 139 9 
0.1771395 
0.177 1403 
0.177 1403" 
0.1771429 
0,1771419 
0.177 141 8 

0.27591 
0.27585 
0.27609 
027606 
0.276 12 
0,216 I2* 
0.27636 
0.276 25 
0.27624 

The analysis of the series for the honeycomb bond problem yields the results in table 10. 
Again we see an upward drift in the estimates for both qc and @ though the estimates are 
somewhat more stable than in the previous case. It seems Iiiely that the true critical 
parameters lie within the estimates qc = 0.177 143(2) and @ = 0.2763(2). 

Finally we analysed the series for the honeycomb site problem, with the results tabu- 
lated in table 11. As in the square site case there is a very pronounced upward drift in the 
estimates for both qc and p. It seems likely that the true critical parameters lie within the 
estimates qc = 0.160067(5) and @ = 0.2763(4). We note that the expected relation between 

is clearly fulfilled by the estimates. This inspires some confidence in the appropriateness 
the values of qc for the square site and honeycomb site problems, q,"e = 2s;' - (qc HC ) 2 , 
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Table 11. Dlog Pad6 appmximanv, to lhe percolation series for directed site percolation on the 
honeycomb lat&zc 

5 0.1598159 0.27017 0.1599573 0.27265 0.1599491 0,27249 
6 0.1599269 0.27203 0.1599516 027254 0,1599487' 0.27248* 
7 0.160018 I 027416 0.1600409 0.27485 0.1600545 0.27532 
8 0.1600656 0.27577 0.1600476 0.27507 0.1599682 0.27195 
9 0.1600378 0.27473 0.1600457 027501 0,1600452 0.27499 
IO 0.16004453 0.27499 0.1600456 027501 0.1600555 027543 
11 0.l600280' 0.27462' 0.I600711 027640 0.1600597 027565 
12 0.160C498 0.27515 0.I600630 0.27585 0.1600630 027585 
13 0.1600630 0.27585 0.1600630 0.27585 0.1600622 0.27580 
14 0.l600620 0.27579 0.1600625 0.27582 0.1600636 0.27589 
15 0.1600630 0.27585 0.1600622* 0.27580' 0.1600391* 0.27665* 
16 0.1600641 0.27593 0.1600656 0.27606 0.1600647 0.27597 
17 0,1600650 0.27600 0.1600655 027604 0,1600662 0.27611 
18 0.1600688 0.27642 0.1600662 027611 

of our extrapolation method in general and our error estimates in particular. 

4.2. The critical amplitudes 

From the leading critical behaviour, P ( 4 )  - A( l  - 4/4c)@, it follows that (4c - 4 )  
P-'/fllpqc - A-'I@q,. So by forming the series for G(q) = (qc -q)P-'l@ we can estimate 
the critical amplitude A from Pad6 approxiinants to G evaluated at qc. The procedure works 
well but requires knowledge of both qc and j3. For the square bond series we know both 
qc and p very accurately, and we have estimated A using values of qc between 0.355 299 
and 0.3553 and values of p ranging from 0.2764 to 0.2765. For each (qc,j3) pair we 
calculate A as the average over all IN + K ,  NI Pad6 approximants with K = 0, i l  and 
2N + K 2 45. The spread among the approximants is minimal for 4c = 0.3552994, 
p = 0.27643, where A = 1.329 1475(2). Allowing for values of qc and p within the full 
range we get A = 1.3292(5). 

For the square site series we used values of qe from 0.29451 to 0.29452 and p from 
0.2761 to 0.2765, averaging over Pad6 approximants with 2N + K 27. In this case the 
spread is minimal for qc = 0.294515, B = 0.2763 with A = 1.425 164(5). Again allowing 
for a wider choice of critical parameters we estimate that A = 1.425(1). 

For the honeycomb bond series we restricted qc to lie between 0.177 138 and 0.177 148 
and +4 between 0.2761 to 0.2765, using all approximants with 2N + K > 26. The minimal 
spread occurs at qc = 0.177 143, @ = 0.27635, where A = 1.10607(2). A wider choice 
for qe and p leads to the estimate A = 1.106(1). 

Finally in the honeycomb site case we used values of qc in the range 0.160065 to 
0.160075 and p from 0.2761 IO 0.2765, using all approximants with 2N + K 2 27. 
The minimal spread occurs when qc = 0.160069, p = 0.2764, where A = 1.16779(2). 
With the wider choice of critical parameters we estimate that A = 1.167(1). The exact 
relation (3) between the square and honeycomb site problems means that there is a simple 
relation between the amplitudes in the two cases. Fist note that AH(l - q / q , H ) @  - 
p H ( q )  = (1 - q)P%q - 4') - (1 - d ( 1 -  (2q - q2)/qc.s)p- Since qc.s = %,H - 7. 
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we find that, (1 - (2q - qz)/qc,s)B = [(qc.H - q)(2 - qc.H - q)/qC,sIb, and therefore 
A H  = (1 - qc.~)l(2 - 2qc.~)qc.~/qC,slBAs = (1 - qe.H)( l  - q:,H/qc.dBAs. Insertions of 
the various critical parameters shows that this relation is indeed satisfied by our amplitude 
estimates. 

A second method, proposed by Liu and Fisher (1989), for calculating critical amplitudes 
starts by assumiilg the functional form P ( q )  - A(q)(l -q/qC)B+B(q). Ohe then traneforms 
this function into g ( q )  = (1 - q/qc)-BP(q) - A ( q )  + E(q)(l - q/q,)-p. The required 
amplitude is now the buckground term in g(q), which can be obtained from inhomogeneous 
differential approximants (Guttmann 1989, p 89). In table 12 we have listed the estimates 
obtained by averaging over various first-order differential approximants, using at least 40 
terms of the series for the square bond case and at least 25 terms in the other cases. The 
critical parameters qc and p, used in the transformation of the series, were the central 
values of the estimates from the previous section. This method generally yields slightly 
lower estimates for the amplitudes and the spread among the approximants is much larger 
than in the first method. 

Table 12. Critical amplitudes A for he four percolation problems obtained by using the 
method of Liu and Fisher (1989). The estimates were calculated by averaging over various 
inhomogeneous differential appiakimants of order L 

L SO bond SQ site HC bond HC site 

10 
I 1  
12 

~~~ 

1.29661 
1.31234 
1.311 14 
1.312 18 
1.31098 
1.31006 
1.32566 
1.309 16 
1.31322 
1.31122 
1.31195 
1.31228 

~~ 

1,41614 

1.39989 
1,377 39 

1.39001 
1.39889 
1.39582 
1.391 62 
1.39449 
1,405 70 
1.403 OK 

1.39175 

1.39359 

~ 

i . i i 520  
l . l i 002  
1. 120 01 
1.11952 
1.11750 
1.11808 
1 ,  I 18 56 
I.  I 19 29 
1.11929 
1.11780 
1.12056 
1.12435 

1.16740- 
1.16579 
1.16607 
1.16564 
1.16546 
1.165 21 
1.16486 
1.165 37 
1.16534 
1.16598 
1,16578 
1.16462 

4.3. The confluent exponent 

We studied the series using two different methods in order to estimate the value of the 
confluent exponent. In the first method, due to Baker and Hunter (1973), one transforms 
the function P ( q )  = Cy=, Ai(l - q/qc)-Ac = CE4?q' into an auxiliary function with 
simple poles at l/hi. We first make the change of variable q = qe(l -e-<) and find, after 
multiplying the coefficient of fy  by k!, the auxiliary function 

which has poles at f = 1/hi with residue -Ailhi. The great advantage of this method (when 
it works) is that one obtains simultaneous estimates for many critical parameters, namely /3, 
A and the critical amplitude, while there is only one parameter, qc, in the transformation. 
In figure 4 we have plotted, respectively, p and A as a function of the transformation 
parameter qc for various [ N  iz K, NI Pad6 approximants, with N 2 25. For each 'guess' 
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. I  .. . , 
0276 09 ' " '  ' ' 

03552% 03553 0355305 0355% 03553 0355305 

9 qc 

-re 4. The critical exponent 8 and confluent exponent A as a function of the parameter qr 
in the B&er-Hunter transformation for the square bond series. 

for q., we performed the Baker-Hunter transformation and located the numerically largest 
and next-largest poles, which are the estimates for the reciprocals of -6 and - ( p  + A), 
respectively. The majority of the approximants have a very narrow crossing region close 
to qc = 0.3552996(3), with ,8 = 0.27645(3) and A = l.oOO(5). In table 13 we have 
listed the estimates for ,8. A and the corresponding critical amplitudes obtained from the 
Baker-Hunter transformed series with qc = 0.355 299 6. The results strongly suggest that 
the leading correction to scaling term is analytic. Furthermore, we note that the estimates 
for the critical amplitudes fully agree with those obtained from the first method used in the 
previous section. 

Table 13. Estimates for the critical exponent 8. critical amplitude A, confluent exponent A 
and confluent amplimde A %a&, obtained from [N. MI Pad6 approximants to the Baker-Hunter 
transformed square bond series with qc = 0.3552996. 

N Y  % 

22 23 0.27645 
23 23 0.27646 
24 23 0.27863 
23 24 0.27645 
24 24 0,27647 
25 24 0.27549 
24 25 0.27645 
25 25 0.27648 
26 25 0.27589 
25 26 0.27645 
26 26 0.27649 
27 26 0.27611 
26 27 0.21645 
27 27 0.27649 

A 

1.3292.5 
1.32930 
1.323 69 
1.32925 
1.329 3 1 
1.331 00 
1.329 26 
1.32935 
1.33038 
1.32926 
1.32936 
1.32992 
1.32928 
1.32936 

- A A x a d  

1.00097 1.03202 
1.00013 t.03029 
0.98439 1,01224 
1.00090 1.03181 
0.99994 1.02993 
1.01375 1.05322 
1.00078 1.03149 
0.99922 1.02857 
1.00698 1.04048 
1.000&1 1.031 14 
0.99906 1.02826 

1.00037 1.03052 
0.999 1 I 1.02836 

i.omos 1.03410 

In the second method, due to Adler et al (1981). one studies Dlog Pad6 approximants 
to the function G(q) = p?P(q) + (qc - q)dP(q)/dq. The logarithmic derivative to G(q) 
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has a pole at qc with residue ,9 + A. We evaluate the Dlog Pad6 approximants for a range 
of guesses for qc and 6. For each such guess we thus find an estimate for A; for the correct 
value of qe and ,fJ one would expect to see a convergence region in (qc, ,9, A)-space. In 
practice we always froze either qc or ,9 and examined A as a function of the other parameter. 
Figure 5 shows, respectively, A as a function of qc with ,9 = 0.27643 and A as a function 
of ,9 with qc = 0.355 2994. This analysis clearly suppons A 2 1, and thus that there is no 
sign of any non-analytic corrections to scaling. 

9 

4 

i3 1 

B 
166 

Figure 5. The confluent exponent A as a function of, respectively, the parameter qc (with 
,8 = 0.27643) and the parameter B (with qc = 0.3552994) using the method of Adler et ol 
(1981). 

For the square site series the results from the Baker-Hunter transformation is less 
convincing, as there is no value of qc at which the various aprroximants cross. If we look 
closely at the approximants evaluated at qc = 0.294515 we find, generally speaking, that 
only the IN - 1, NI approximants yield estimates of ,fJ close to the expected value with 
corresponding estimates for A consistent with an analytic correction. The method of Adler 
eta1 (1981) confirms that A 2 I. 

In the honeycomb bond case several of the approximants to the Baker-Hunter 
transformed series have a crossing for qc = 0.177 144(1), ,9 = 0.2767(1) and A = 0.89(2), 
though it should be noted that the scatter is quite large. When we analyse the series using 
the second method we find that, for qc and ,fJ close to the central values from the Dlog Pad6 
analysis. a value of 1 for A is fully compatible with the results. 

5. Conclusion 

In this paper we have presented extended series for the percolation probability for site and 
bond percolation on the square and honeycomb lattices. The analysis of the series leads 
to improved estimates for the percolation threshold (particularly for the honeycomb bond 
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problem) and the order-parameter exponent p .  To summarize we estimate that 

q. = 0.3552994(10) @ = 0.27643(10) A = 1.3292(5) square bond problem 
qc = 0.294515(5) p =  0.27630) A = 1.425(1) square site problem 
qc = 0.177 143(2) @ = 0.2763(2) A = 1.106(1) honeycomb bond problem 
qc = 0.160067(5) p = 0.2763(4) A = 1.167(1) honeycomb site problem. 

The estimates for qc = 1 - pc for the square bond and site problem are in excellent 
agreement with those obtained by Essam et nl (1986, 1988). qc = 0.355303(6) and 
qe = 0.29451(1), respectively. The estimates for f i  clearly show, as one would expect, that 
all the models studied in this paper belong to the same universality class. The value of p does 
not suggest any simple fraction. Indeed, around the central value for p (square bond), we 
find only four fractions with denominators less than 15M). They are: j?& = 0.276422.. . , 
81 = 0.276429 ..., = 0.276435 .... None of these are 
remotely compelling, and Ieave open the question as to why this apparently simple problem 
has such an ugly exponent. This does seem to be a frequent characteristic of directed 
problems, as evidenced by the recent study of the longitudinal size exponent of square lattice 
directed animals (Conway and Guttmann 1994) in which it was found that 41 = 0.81722(5), 
a result which suggests no simple rational fraction. Finally, we note that none of the series 
show any evidence of non-analytic confluent correction terms. This provides a hint that the 
model might be exactly solvable. 

I Jensen and A J Guttmann 

= 0.276433 ... and 14w 
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